Shortcuts
 My blog: Visions in Math.
 My Thingiverse page.
 Talks and Exhibits …..
 Instructions for making models …..
 Calculus models ….
 Geometrical & Topological models ….
 Mathematics and the Fiber Arts….
Background
This webpage is dedicated to sharing some of the ways key ideas in mathematics may be visualized. Everything on the page should be freely accessible everyone. You’ll find Mathematica notebooks, as well as 3D printable objects that can be used in the classroom. I’ve been inspired by the likes of of Laura Taalman, Henry Segerman, David Bachman , Jason Cantarella, George Francis, and the late Bill Thurston.
We used the 3D printers in the IQ center and the Mathematics Department: Series 1 Pro, uPrint SE, FormLabs 1+, MakerBot Replicator 2 and 2x, Afinia H480, and ProJet 260 printers. (The 3D printers in the Mathematics Department were originally purchased for the 2013 Jockey John Robinson FirstYear seminar titled The Shape of Space taught by Professor Aaron Abrams.)
Thanks must go to the Washington & Lee students who’ve helped develop these tools: Emily Jaekle (’16), Ryan McDonnell (’17). Thanks also to the Washington & Lee Summer Research Scholars Program which funded their research.
Finally, I’m eternally grateful for all of the technical assistance patiently provided by David Pfaff from the IQ Center at Washington & Lee University.
Found on the Internet
Blogs
 My own blog Visions in Math, giving an ongoing description of all this neat stuff.
 Laura Taalman’s blog Hacktastic is where she describes her current projects. MakerHome blog is where she described how she printed one 3D print every day for a year.
 David Bachman’s blog Math/Art gives his meditations on 3D design using Rhino and Grasshopper.
 Henry Segerman’s webpage is always worth a look.
 Thingiverse is a huge resource of downloadable 3D printable objects.
 Shapeways is an online shop which allows folks to upload their 3D designs and have them printed. You can also buy 3D prints of many of the featured designs.
 My own Thingiverse page which has the mathematical objects from this page and more.
 Laura Taalman’s Thingiverse page contains a huge array of mathematically inspired objects, and also other more whimsical objects.
 Henry Segerman’s Shapeways page and Thingiverse page contain a huge array of truly beautiful mathematical objects and mathematical art.
 Jason Cantarella’s Thingiverse page contains some neat math objects as well as a huge list of energy minimizing knots and links.
Talks & Exhibited Work
Some of the places my models have been seen.
 WINRS (Women’s Intellectual Network Research Symposium) UVA Charlottesville VA, September 15, 2018.
 3D Printing and Illustrating Mathematics talk (10.7 MB)
 About 30 different objects from my Calculus II, Multivariable Calculus, Geometry & Topology, and Knots & Links collections.
Tall Hyperboloid of one sheet  Taping Shape: Why Knot? exhibit (February 22 – September 30, 2018) at the Rueben H. Fleet Science Center in San Diego California. I codeveloped this exhibit with Ashanti Davis, which explores knot theory through a giant trefoil knot made out of packing tape that you can walk inside of, as well as handson interactive exhibits.
 Technical Tools for 3D printing, Joint Math Meetings, MAA IPS Atlanta GA, January 5, 2017. About 30 different objects from my Calculus II, Multivariable Calculus, Geometry & Topology, and Knots & Links collections.
 Cinema 4D and Calculus models talk (10 MB).
 Cinema 4D Interface handout.
 Introduction to Cinema 4D: with basic commands, and tips on fixing meshes.
 Unknot Conference III, at Dennison University, July 31 – August 3, 2016. About 30 different objects from my Calculus II, Multivariable Calculus, Geometry & Topology, and Knots & Links collections.
 Illustrating Mathematics, ICERM (Institute for Computational and Experimental Research in Mathematics) at Brown University, June 27 – July 1, 2016. About 25 different objects from my Calculus II, Multivariable Calculus, Geometry & Topology, and Knots & Links collections.
 Mathematics & 3D printing colloquium talk, April 2017 (at Vassar College, and San Diego State University). Download here (11 MB).
 The Taping Shape* exhibit (January 30 – September 5, 2016) at the Rueben H. Fleet Science Center in San Diego California.
 Pairofpants and bent pairofpants surfaces, with caps and rings.
 Schwarz P triply periodic minimal surface, and soap film frame for the Schwarz P minimal surface.
*The Taping shape exhibit is part of the InforMath project funded by the National Science Foundation (DRL1323587). (The InforMath project is a partnership between San Diego State University and several museums at the Balboa Park, including the Reuben H. Fleet Science Center.)
Schwarz P models  On Thingiverse
 April 11, 2016. Some of my designs feature in glitchpuddings DenneDesigns collection.
 April 7, 2016. Some of my knots feature in glitchpuddings Very Knotty collection.
 March 2016. My quadratic surfaces collection was a featured item on the main Thingiverse page.
 March 2016. On the Find People to Follow list.
 As one of the Thingiversity educators.
Instructions
Please let me know if you have corrections or improvements for these instructions. Thanks!
Warning 1: these instructions were last checked in 2016. Some of the software may have changed since then.
 Cinema 4D interface handout, giving handy short cuts and language to describe C4D.
 Introduction to Cinema 4D: A guide to getting started in Cinema 4D, with basic commands and tips on fixing meshes.
 Our collective wisdom on designing and printing is here: Trouble Shooting Guide.
 Instructions on how to import a Mathematica object into Cinema 4D.
 Instructions on how to put equations on solids in Cinema 4D.
 To make something like the three volumes with defining equations (shown below right), first make the solid in Mathematica, then import it into Cinema 4D, and finally add equations.
 Instructions on how to download Magic Merge and use it in Cinema 4D.
 Instructions on how to construct a volume by disc method, by cylindrical shell method, and by general slices (Calculus II) in Cinema 4D.
 Instructions on how to construct a volume demonstrating the slices used in iterated integrals (Multivariable Calculus) in Cinema 4D.
 Instructions on how to create quadratic surfaces (Multivariable Calculus) in Cinema 4D.
 Instructions on how to put text along a spline and an extruded parametric curve (like a knot) in Cinema 4D.
 Instructions on how to create a knot in Cinema 4D.
 MakerBot 2 and 2X Manuals and Guides from the MakerBot website.
 A YouTube clip on how to unclog a MakerBot Replicator 2 nozzle.
 FormLabs Manuals and Guides from the FormLab website.
Warning: these instructions were last checked in 2016. Some of the software may have changed since then.
 Our reminder instructions on how to set up and print with the MakerBot 2X printer.
 Our reminder instructions on how to set up and print with the FormLabs Form 1+ printer.
Calculus
Calculus II
 Mathematica Notebooks
 Volumes of Revolution and by Slices Mathematica notebook containing
many Mathematica Demonstrations of these ideas.
 Volumes of Revolution and by Slices Mathematica notebook containing
 Volumes of Revolution Mathematica notebook, giving a specific example of an area between two curves rotated about the line \(y=1\) and \(y=1.25\).
 Two Intersecting Cylinders Mathematica notebook.
 Class Project (BROKEN LINKS July 19 2019)
 Introduction to Cinema 4D for Calculus II project.
 Calculus II Project: students design 3D printable models of volumes of revolution or volumes by slices.
Calculus II Thingiverse models (BROKEN LINKS July 19, 2019)

 Sphere: 10 disks on Thingiverse.
 Sphere: 20 disks on Thingiverse.

 Volume: 16 cylindrical shells on Thingiverse. The area between the function \(y=2x^2x^3\) and the xaxis is rotated about the yaxis creating a volume of revolution. This model shows this volume approximated by 16 cylindrical shells. (The 16th shell in the center has zero volume so is not included in the print model!)
 10 Equilateral triangles on a circular base on Thingiverse. A solid has a circular base of radius 1. Parallel crosssections perpendicular to the base are equilateral triangles. This solid is approximated by 10 equilateral triangular prisms. This approximation illustrates how the volume of the solid is found using an integral of the crosssectional slices.
 20 Equilateral triangles on a circular base on Thingiverse. A solid has a circular base of radius 1. Parallel crosssections perpendicular to the base are equilateral triangles. This solid is approximated by 20 equilateral triangular prisms. This approximation illustrates how the volume of the solid is found using an integral of the crosssectional slices.

 Strange Bowl: smooth, Strange Bowl: 16 cylindrical shells, and Strange Bowl: 16 washers all on Thingiverse. The area between \(y=x\) and \(y=x^2\) is rotated about the line \(y=1.25\). This creates a volume of revolution which looks a bit like a bowl, but with a conical interior and a big hole in the bottom. This volume is shown, along with an approximation by 16 washers and 16 cylindrical shells. Note that the 16th washer and 16th shell do not appear on the models. (Near the bottom of the bowl, the shape is so flat that they are disconnected from the others.)
 Volumes of Hanoi on Thingiverse by Laura Taalman. 3D model for illustrating a popular calculus concept: volumes of solids of revolution, approximated by cylindrical shells and washers.
Multivariable Calculus
 Mathematica Notebooks
 Parametric Curves Mathematica notebook containing examples of parametric curves, knots, and parametric curves arising from the intersection of two surfaces.
 Quadratic Surfaces Mathematica notebook containing a Mathematica demonstration of all quadratic surfaces, and separate examples of individual surfaces.
 Volumes by Triple Integrals Mathematica notebook containing the Mathematica code for Wedge 1 & 2, Tetrahedron 1 & 2, the intersection of a paraboloid and a sphere, and a model of a tumor.
 Intersecting Cylinders Mathematica notebook showing the intersections of 2 and 3 cylinders.
 John Zweck (UT Dallas) has a great series of 3Dprintable models and active learning projects that accompany them. Click here for more information.
Multivariable Calculus Thingiverse Models

 Coordinate axes on Thingiverse. This is a set of coordinate axes for 3dimensional space, where the ends of the axes have been labeled with x, y, and z.
 Teaching double and interated integrals

 Volume by no French Fries, Volume by 16 French Fries, and Volume by 64 French Fries on Thingiverse. The first model shows the volume below \(z=16x^22y^2\), above the xyplane, and inside the square \([0,2]\times[0,2]\). The second and third models show this volume approximated with rectangular prisms by taking the \([0,2]\times[0,2]\) square and subdividing it into 16 and 64 smaller squares. We then create a rectangular prism by choosing the height to be the function value in the center of each square. On all the models the height was scaled down by a factor of four. This is an illustration of the definition of a double integral.
Volumes by iterated integrals Volume: no slices, Volume: slices x constant, and Volume: slices y constant on Thingiverse. The first model shows the volume below the surface \(z=sin(x)cos(y)\), above the xyplane and inside the rectangle \([0,\pi/2]\times[0,\pi/2]\). The second and third models show the volume approximated by 8 slices, where the xvalue, respectively the yvalue, has been held constant at the midpoint of each subinterval (so \(x=\pi/32, 3\pi/32, … , 15\pi/32\)). This is an illustration of Fubini’s Theorem and interated integration.

 Volumes for double and triple integrals
 Wedge 1 on Thingiverse. Wedge 1 represents the volume enclosed by \(z=0, x=0, x=y^2\), and \(y+z=1\).
 Wedge 2 on Thingiverse. Wedge 2 represents the volume enclosed by \(z=0, x=0, y=0, z=1x^2\), and \(y=1x\).
 Tetrahedron 1 on Thingiverse. This tetrahedron is defined by equations \(x+2y+z=2, x=2y, z=0\), and \(x=0\).
 Tetrahedron 2 on Thingiverse. This tetrahedron is defined by equations \(y=6, z=0, z=x+4\), and \(2x+y+z=4\).
 The very interesting Monkey Saddle (\(z=x^33xy^2\)) on Thingiverse.
 Bulge Head on Thingiverse. This model is the volume above the xyplane, outside the unit sphere, and inside the cardioid of revolution \(\rho=1+\cos(\phi)\) (in spherical coordinates).
 ParaboloidSphere Intersection on Thingiverse. This model is the volume of intersection between the paraboloid \(z=x^2+y^2\) and the sphere \(x^2+y^2+z^2=2\).
 Tumor model (spherical cordinates) on Thingiverse. A tumor may be modeled in spherical coordinates by \(\rho=1+1/5 \sin(m\theta)\sin(n\phi)\). This model shows the case where \(m=8\) and \(n=7\).
 Quadratic surfaces
 Paraboloid (\(z = x^2 + y^2\)) and Elliptic paraboloid (\(z = x^2/4 + y^2/7\)) on Thingiverse.
 Ellipsoid 1 (\(x^2/25 + y^2/16 + z^2/4 = 1\)) and Ellipsoid 2 (\(x^2/4 + y^2/6 + z^2/3 = 1\)) on Thingiverse.
 Hyperbolic paraboloid (\(x^2 – y^2 = 2z\)) on Thingiverse.
 Hyperbolic paraboloid – round \(z= x^2 – y^2\) inside \(x^2+y^2=1\)) on Thingiverse.

 Hyperboloid of one sheet (\(x^2 + y^2 – z^2 = 1\)) on Thingiverse.
 Hyperboloid of one sheet – tall (\(x^2/4 + y^2/4 – z^2/9 = 1\)) on Thingiverse.
 Hyperboloid of two sheets (\(x^2 – y^2 + z^2 = 1\)) on Thingiverse.
 Cone (\(x^2 + y^2 = z^2\)) on Thingiverse.
 Not a quadratic surface, but still the very interesting Monkey Saddle (\(z=x^33xy^2\)) on Thingiverse.
 Henry Segerman’s collection of quadratic surfaces on Shapeways.
 Parametric Curves
 Helix with equation on Thingiverse. Parametrization \(x=\cos t, y=\sin t, z=t\) from \(t=0\) to \(t=5\pi\).
Parametric curves Spiral on Cone on Thingiverse. Parametrization \(x=t\cos t, y=t\sin t, z=t\) from \(t=0\) to \(t=5\pi\).
 SelfIntersecting Curve on Thingiverse. Parametrization \(x=\cos t, y=\sin t, z=1/(1+t^2)\) from \(t=2\pi\) to \(t=2\pi\).
 (2,3) Torus knot on Thingiverse.
 (3,2) Torus knot on Thingiverse.
 Intersecting cylinders
 Two Intersecting Cylinders on Thingiverse. This model shows two right circular cylinders of equal radii intersecting at right angles.
Steinmetz surfaces Two Intersecting Cylinders – halfway on Thingiverse. This model shows half of two right circular cylinders of equal radii intersecting at right angles.
 Three Intersecting Cylinders on Thingiverse. This model shows three right circular cylinders of equal radii intersecting at right angles.
 Three Intersecting Cylinders – halfway on Thingiverse. This model shows half of three right circular cylinders of equal radii intersecting at right angles.
 Steinmetz solid on Thingiverse. The Steinmetz solid is the solid common to two right circular cylinders of equal radii intersecting at right angles.
 Steinmetz – 3 cylinders on Thingiverse. This Steinmetz solid is the solid common to three right circular cylinders of equal radii intersecting at right angles.
Knots, Topology and Geometry
Knots
 Mathematica Notebooks
 Torus Knots Mathematica notebook showing a torus with meridian and longitude curves, as well as numerous torus knots.

 Thingiverse Models
 (2,3) Torus knot on Thingiverse.
 (3,2) Torus knot on Thingiverse.
 6_2 Knot from SeifertView on Thingiverse.
 Figure 8 Seifert Surface on Thingiverse.
 Three Interlocking Trefoil Knots on Thingiverse.
 (5,3) Ribbon Torus Knot on Thingiverse.
 (3,2) Ribbon Torus Knot on Thingiverse.
 Thingiverse Models

 Jason Cantarella’s Prime Knots collection on Thingiverse.
 Jason Cantarella’s Prime Links collection on Thingiverse.
 Jason Cantarella’s Composite Knots and Links collection on Thingiverse.
Geometry
 Thingiverse Models

 Pairofpants surface, bent pairofpants surface, caps and rings.
 Schwarz P surface #1 triply periodic minimal surface.
 Schwarz P surface # 2 triangulated triply periodic minimal surface.
 Schwarz P surface – approximation triply periodic minimal surface.
 Soap film frame for the Schwarz P minimal surface.
Topology
 Mathematica Notebooks
 Helicoids Mathematica notebook.
 Thingiverse Models
 Helicoids: half and full twist on Thingiverse. This is parametrized by equations \(x(t)=u \cos t, y(t)=u\sin t\), and \(z(t) = 2t/3\), where the parameter u goes between 1 and 1. The parameter t goes between 0 and \(\pi\) or \(2\pi\).
 Helicoid 2 on Thingiverse. This is parametrized by equations \(x(t)=u\cos t, y(t)=u\sin t\), and \(z(t) = 2t/3\), where the parameter u goes between 0.25 and 1.25. The parameter t goes between 0 and \(\pi\) or \(2\pi\).

 kitwallace has a customizable Mobius strip on Thingiverse. I’ve used it to create Mobius Strip – 5 halftwistsand Mobius Strip – 2 halftwists (the latter is of course an annulus).
 MadOverlord’s Voronoi Klein Bottle on Thingiverse.
 pkafin’s Half Klein Bottle on Thingiverse.
Mathematics & the Fiber Arts
Mathematical Knitting and Crochet
 sarahmarie belcastro has a fantastic page on mathematical knitting and mathematical fiber arts. It’s my goto page for information on this.
 Crochet Coral Reef is exhibited at many museums and art galleries around the world. See below.
Hyperbolic Crochet Coral Reef
 Crochet Coral Reef is exhibited at many museums around the world, from the Smithsonian museum to the Powerhouse Museum in Sydney Australia. The exhibits combine hyperbolic geometry, crochet, art and ecology.
 Roanoke Valley Reef: a satellite reef of the hyperbolic crochet coral reef project. The exhibit was held in Roanoke College’s Olin Gallery in JanuaryMarch, 2013.
 The Institute for Figuring an organization supporting the crochet coral reef project and other math & art projects.
 TED talk by Margaret Wertheim “The beautiful math of coral”.
 The Maine Reef: patterns and more.
 The Gainesville Florida Reef: math, patterns and more.
 Don’t know how to crochet? There are plenty of resources out there. You can look online or, even better, go to your local yarn store for help.
Crochet coral reef from the Powerhouse exhibit.